/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../inc/MarlinConfig.h"
#if ENABLED(IIC_BL24CXX_EEPROM)
/**
* PersistentStore for Arduino-style EEPROM interface
* with simple implementations supplied by Marlin.
*/
#include "BL24CXX.h"
#ifdef __STM32F1__
#include
#else
#include "../HAL/shared/Delay.h"
#define delay_us(n) DELAY_US(n)
#endif
#ifndef EEPROM_WRITE_DELAY
#define EEPROM_WRITE_DELAY 10
#endif
#ifndef EEPROM_DEVICE_ADDRESS
#define EEPROM_DEVICE_ADDRESS (0x50 << 1)
#endif
// IO direction setting
#ifdef __STM32F1__
#define SDA_IN() do{ PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL &= 0X0FFFFFFF; PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL |= 8 << 28; }while(0)
#define SDA_OUT() do{ PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL &= 0X0FFFFFFF; PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL |= 3 << 28; }while(0)
#else
#define SDA_IN() SET_INPUT(IIC_EEPROM_SDA)
#define SDA_OUT() SET_OUTPUT(IIC_EEPROM_SDA)
#endif
// IO ops
#define IIC_SCL_0() WRITE(IIC_EEPROM_SCL, LOW)
#define IIC_SCL_1() WRITE(IIC_EEPROM_SCL, HIGH)
#define IIC_SDA_0() WRITE(IIC_EEPROM_SDA, LOW)
#define IIC_SDA_1() WRITE(IIC_EEPROM_SDA, HIGH)
#define READ_SDA() READ(IIC_EEPROM_SDA)
//
// Simple IIC interface via libmaple
//
// Initialize IIC
void IIC::init() {
SET_OUTPUT(IIC_EEPROM_SDA);
SET_OUTPUT(IIC_EEPROM_SCL);
IIC_SCL_1();
IIC_SDA_1();
}
// Generate IIC start signal
void IIC::start() {
SDA_OUT(); // SDA line output
IIC_SDA_1();
IIC_SCL_1();
delay_us(4);
IIC_SDA_0(); // START:when CLK is high, DATA change from high to low
delay_us(4);
IIC_SCL_0(); // Clamp the I2C bus, ready to send or receive data
}
// Generate IIC stop signal
void IIC::stop() {
SDA_OUT(); // SDA line output
IIC_SCL_0();
IIC_SDA_0(); // STOP:when CLK is high DATA change from low to high
delay_us(4);
IIC_SCL_1();
IIC_SDA_1(); // Send I2C bus end signal
delay_us(4);
}
// Wait for the response signal to arrive
// 1 = failed to receive response
// 0 = response received
uint8_t IIC::wait_ack() {
uint8_t ucErrTime = 0;
SDA_IN(); // SDA is set as input
IIC_SDA_1(); delay_us(1);
IIC_SCL_1(); delay_us(1);
while (READ_SDA()) {
if (++ucErrTime > 250) {
stop();
return 1;
}
}
IIC_SCL_0(); // Clock output 0
return 0;
}
// Generate ACK response
void IIC::ack() {
IIC_SCL_0();
SDA_OUT();
IIC_SDA_0();
delay_us(2);
IIC_SCL_1();
delay_us(2);
IIC_SCL_0();
}
// No ACK response
void IIC::nAck() {
IIC_SCL_0();
SDA_OUT();
IIC_SDA_1();
delay_us(2);
IIC_SCL_1();
delay_us(2);
IIC_SCL_0();
}
// Send one IIC byte
// Return whether the slave responds
// 1 = there is a response
// 0 = no response
void IIC::send_byte(uint8_t txd) {
SDA_OUT();
IIC_SCL_0(); // Pull down the clock to start data transmission
LOOP_L_N(t, 8) {
// IIC_SDA = (txd & 0x80) >> 7;
if (txd & 0x80) IIC_SDA_1(); else IIC_SDA_0();
txd <<= 1;
delay_us(2); // All three delays are necessary for TEA5767
IIC_SCL_1();
delay_us(2);
IIC_SCL_0();
delay_us(2);
}
}
// Read 1 byte, when ack=1, send ACK, ack=0, send nACK
uint8_t IIC::read_byte(unsigned char ack_chr) {
unsigned char receive = 0;
SDA_IN(); // SDA is set as input
LOOP_L_N(i, 8) {
IIC_SCL_0();
delay_us(2);
IIC_SCL_1();
receive <<= 1;
if (READ_SDA()) receive++;
delay_us(1);
}
ack_chr ? ack() : nAck(); // Send ACK / send nACK
return receive;
}
/******************** EEPROM ********************/
// Initialize the IIC interface
void BL24CXX::init() { IIC::init(); }
// Read a byte at the specified address
// ReadAddr: the address to start reading
// Return: the byte read
uint8_t BL24CXX::readOneByte(uint16_t ReadAddr) {
uint8_t temp = 0;
IIC::start();
if (EE_TYPE > BL24C16) {
IIC::send_byte(EEPROM_DEVICE_ADDRESS); // Send write command
IIC::wait_ack();
IIC::send_byte(ReadAddr >> 8); // Send high address
IIC::wait_ack();
}
else
IIC::send_byte(EEPROM_DEVICE_ADDRESS + ((ReadAddr >> 8) << 1)); // Send device address 0xA0, write data
IIC::wait_ack();
IIC::send_byte(ReadAddr & 0xFF); // Send low address
IIC::wait_ack();
IIC::start();
IIC::send_byte(EEPROM_DEVICE_ADDRESS | 0x01); // Send byte
IIC::wait_ack();
temp = IIC::read_byte(0);
IIC::stop(); // Generate a stop condition
return temp;
}
// Write a data at the address specified by BL24CXX
// WriteAddr: The destination address for writing data
// DataToWrite: the data to be written
void BL24CXX::writeOneByte(uint16_t WriteAddr, uint8_t DataToWrite)
{
IIC::start();
if (EE_TYPE > BL24C16) {
IIC::send_byte(EEPROM_DEVICE_ADDRESS); // Send write command
IIC::wait_ack();
IIC::send_byte(WriteAddr >> 8); // Send high address
}
else
{
IIC::send_byte(EEPROM_DEVICE_ADDRESS + ((WriteAddr >> 8) << 1)); // Send device address 0xA0, write data
}
IIC::wait_ack();
IIC::send_byte(WriteAddr & 0xFF); // Send low address
IIC::wait_ack();
IIC::send_byte(DataToWrite); // Receiving mode
IIC::wait_ack();
IIC::stop(); // Generate a stop condition
delay(5);
}
// Start writing data of length Len at the specified address in BL24CXX
// This function is used to write 16bit or 32bit data.
// WriteAddr: the address to start writing
// DataToWrite: the first address of the data array
// Len: The length of the data to be written 2, 4
void BL24CXX::writeLenByte(uint16_t WriteAddr, uint32_t DataToWrite, uint8_t Len) {
LOOP_L_N(t, Len)
writeOneByte(WriteAddr + t, (DataToWrite >> (8 * t)) & 0xFF);
}
// Start reading data of length Len from the specified address in BL24CXX
// This function is used to read 16bit or 32bit data.
// ReadAddr: the address to start reading
// Return value: data
// Len: The length of the data to be read 2,4
uint32_t BL24CXX::readLenByte(uint16_t ReadAddr, uint8_t Len) {
uint32_t temp = 0;
LOOP_L_N(t, Len) {
temp <<= 8;
temp += readOneByte(ReadAddr + Len - t - 1);
}
return temp;
}
// Check if BL24CXX is normal
// Return 1: Detection failed
// return 0: detection is successful
#define BL24CXX_TEST_ADDRESS 0x00
#define BL24CXX_TEST_VALUE 0x55
bool BL24CXX::_check() {
return (readOneByte(BL24CXX_TEST_ADDRESS) != BL24CXX_TEST_VALUE); // false = success!
}
bool BL24CXX::check()
{
if (_check())
{
// Value was written? Good EEPROM!
writeOneByte(BL24CXX_TEST_ADDRESS, BL24CXX_TEST_VALUE); // Write now and check.
return _check();
}
return false; // success!
}
// Start reading the specified number of data at the specified address in BL24CXX
// ReadAddr: The address to start reading is 0~255 for 24c02
// pBuffer: the first address of the data array
// NumToRead: the number of data to be read
void BL24CXX::read(uint16_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead) {
for (; NumToRead; NumToRead--)
*pBuffer++ = readOneByte(ReadAddr++);
}
// Start writing the specified number of data at the specified address in BL24CXX
// WriteAddr: the address to start writing, 0~255 for 24c02
// pBuffer: the first address of the data array
// NumToWrite: the number of data to be written
void BL24CXX::write(uint16_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
{
for (; NumToWrite; NumToWrite--, WriteAddr++)
{
writeOneByte(WriteAddr, *pBuffer++);
}
}
void BL24CXX::EEPROM_Reset(uint16_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
{
write(WriteAddr, 0, NumToWrite);
delay(200);
}
//
// 参考安富莱的EEPROM驱动代码 - 该实现代码的好处是不需要通过延时去保证写时序,而是通过等待应答去保证写时序
//
#define I2C_WR 0 /* 写控制bit */
#define I2C_RD 1 /* 读控制bit */
// 页面大小(字节)
#define EE_PAGE_SIZE 16 // 为了保证兼容,对于页大小为32和64字节的也按16字节写
uint8_t BL24CXX::quickReadBytes(uint16_t Address, uint8_t *ReadBuf, uint16_t Size)
{
uint16_t i;
uint8_t addr_bytes = (EE_TYPE > BL24C16) ? 2 : 1;
/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
/* 第1步:发起I2C总线启动信号 */
IIC::start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
if (addr_bytes == 1){
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((Address >> 8) & 0x07) << 1)); /* 此处是写指令 */
}
else {
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR);
}
/* 第3步:发送ACK */
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
if (addr_bytes == 1){
IIC::send_byte((uint8_t)Address);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
}
else{
IIC::send_byte(Address >> 8);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
IIC::send_byte(Address);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
}
/* 第6步:重新启动I2C总线。下面开始读取数据 */
IIC::start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:循环读取数据 */
for (i = 0; i < Size; i++){
ReadBuf[i] = IIC::read_byte((i != Size - 1) ? 1 : 0); /* 读1个字节 */
// /* 每读完1个字节后,需要发送Ack, 最后一个字节不需要Ack,发Nack */
// if (i != Size - 1){
// IIC::ack(); /* 中间字节读完后,CPU产生ACK信号(驱动SDA = 0) */
// }
// else{
// IIC::nAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
// }
}
/* 发送I2C总线停止信号 */
IIC::stop();
return 1; /* 执行成功 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
IIC::stop();
return 0;
}
uint8_t BL24CXX::quickWriteBytes(uint16_t Address, uint8_t *WriteBuf, uint16_t Size)
{
uint16_t i, m;
uint16_t usAddr;
uint8_t addr_bytes = (EE_TYPE > BL24C16) ? 2 : 1;
/*
写串行EEPROM不像读操作可以连续读取很多字节,每次写操作只能在同一个page。
对于24xx02,page size = 8
简单的处理方法为:按字节写操作模式,每写1个字节,都发送地址
为了提高连续写的效率: 本函数采用page wirte操作。
*/
usAddr = Address;
for (i = 0; i < Size; i++){
/* 当发送第1个字节或是页面首地址时,需要重新发起启动信号和地址 */
if ((i == 0) || (usAddr & (EE_PAGE_SIZE - 1)) == 0){
/* 发停止信号,启动内部写操作 */
IIC::stop();
/* 通过检查器件应答的方式,判断内部写操作是否完成, 一般小于 10ms
CLK频率为200KHz时,查询次数为30次左右
*/
for (m = 0; m < 1000; m++){
/* 第1步:发起I2C总线启动信号 */
IIC::start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
if(addr_bytes == 1){
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((usAddr >> 8) & 0x07) << 1)); /* 此处是写指令 */
}
else {
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR);
}
/* 第3步:发送一个时钟,判断器件是否正确应答 */
if (IIC::wait_ack() == 0){
break;
}
}
if (m == 1000){
goto cmd_fail; /* EEPROM器件写超时 */
}
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
if (addr_bytes == 1){
IIC::send_byte((uint8_t)usAddr);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
}
else{
IIC::send_byte(usAddr >> 8);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
IIC::send_byte(usAddr);
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
}
}
/* 第6步:开始写入数据 */
IIC::send_byte(WriteBuf[i]);
/* 第7步:发送ACK */
if (IIC::wait_ack() != 0){
goto cmd_fail; /* EEPROM器件无应答 */
}
usAddr++; /* 地址增1 */
}
/* 命令执行成功,发送I2C总线停止信号 */
IIC::stop();
/* 通过检查器件应答的方式,判断内部写操作是否完成, 一般小于 10ms
CLK频率为200KHz时,查询次数为30次左右
*/
for (m = 0; m < 1000; m++){
/* 第1步:发起I2C总线启动信号 */
IIC::start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
if(addr_bytes == 1) {
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((Address >> 8) & 0x07) << 1)); /* 此处是写指令 */
}
else{
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR); /* 此处是写指令 */
}
/* 第3步:发送一个时钟,判断器件是否正确应答 */
if (IIC::wait_ack() == 0){
break;
}
}
if (m == 1000){
goto cmd_fail; /* EEPROM器件写超时 */
}
/* 命令执行成功,发送I2C总线停止信号 */
IIC::stop();
return 1;
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
IIC::stop();
return 0;
}
#endif // IIC_BL24CXX_EEPROM