465 lines
14 KiB
C++
465 lines
14 KiB
C++
/**
|
||
* Marlin 3D Printer Firmware
|
||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||
*
|
||
* This program is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
*
|
||
*/
|
||
|
||
#include "../inc/MarlinConfig.h"
|
||
|
||
#if ENABLED(IIC_BL24CXX_EEPROM)
|
||
|
||
/**
|
||
* PersistentStore for Arduino-style EEPROM interface
|
||
* with simple implementations supplied by Marlin.
|
||
*/
|
||
|
||
#include "BL24CXX.h"
|
||
#ifdef __STM32F1__
|
||
#include <libmaple/gpio.h>
|
||
#else
|
||
#include "../HAL/shared/Delay.h"
|
||
#define delay_us(n) DELAY_US(n)
|
||
#endif
|
||
|
||
#ifndef EEPROM_WRITE_DELAY
|
||
#define EEPROM_WRITE_DELAY 10
|
||
#endif
|
||
#ifndef EEPROM_DEVICE_ADDRESS
|
||
#define EEPROM_DEVICE_ADDRESS (0x50 << 1)
|
||
#endif
|
||
|
||
// IO direction setting
|
||
#ifdef __STM32F1__
|
||
#define SDA_IN() do{ PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL &= 0X0FFFFFFF; PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL |= 8 << 28; }while(0)
|
||
#define SDA_OUT() do{ PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL &= 0X0FFFFFFF; PIN_MAP[IIC_EEPROM_SDA].gpio_device->regs->CRL |= 3 << 28; }while(0)
|
||
#else
|
||
#define SDA_IN() SET_INPUT(IIC_EEPROM_SDA)
|
||
#define SDA_OUT() SET_OUTPUT(IIC_EEPROM_SDA)
|
||
#endif
|
||
|
||
// IO ops
|
||
#define IIC_SCL_0() WRITE(IIC_EEPROM_SCL, LOW)
|
||
#define IIC_SCL_1() WRITE(IIC_EEPROM_SCL, HIGH)
|
||
#define IIC_SDA_0() WRITE(IIC_EEPROM_SDA, LOW)
|
||
#define IIC_SDA_1() WRITE(IIC_EEPROM_SDA, HIGH)
|
||
#define READ_SDA() READ(IIC_EEPROM_SDA)
|
||
|
||
//
|
||
// Simple IIC interface via libmaple
|
||
//
|
||
|
||
// Initialize IIC
|
||
void IIC::init() {
|
||
SET_OUTPUT(IIC_EEPROM_SDA);
|
||
SET_OUTPUT(IIC_EEPROM_SCL);
|
||
IIC_SCL_1();
|
||
IIC_SDA_1();
|
||
}
|
||
|
||
// Generate IIC start signal
|
||
void IIC::start() {
|
||
SDA_OUT(); // SDA line output
|
||
IIC_SDA_1();
|
||
IIC_SCL_1();
|
||
delay_us(4);
|
||
IIC_SDA_0(); // START:when CLK is high, DATA change from high to low
|
||
delay_us(4);
|
||
IIC_SCL_0(); // Clamp the I2C bus, ready to send or receive data
|
||
}
|
||
|
||
// Generate IIC stop signal
|
||
void IIC::stop() {
|
||
SDA_OUT(); // SDA line output
|
||
IIC_SCL_0();
|
||
IIC_SDA_0(); // STOP:when CLK is high DATA change from low to high
|
||
delay_us(4);
|
||
IIC_SCL_1();
|
||
IIC_SDA_1(); // Send I2C bus end signal
|
||
delay_us(4);
|
||
}
|
||
|
||
// Wait for the response signal to arrive
|
||
// 1 = failed to receive response
|
||
// 0 = response received
|
||
uint8_t IIC::wait_ack() {
|
||
uint8_t ucErrTime = 0;
|
||
SDA_IN(); // SDA is set as input
|
||
IIC_SDA_1(); delay_us(1);
|
||
IIC_SCL_1(); delay_us(1);
|
||
while (READ_SDA()) {
|
||
if (++ucErrTime > 250) {
|
||
stop();
|
||
return 1;
|
||
}
|
||
}
|
||
IIC_SCL_0(); // Clock output 0
|
||
return 0;
|
||
}
|
||
|
||
// Generate ACK response
|
||
void IIC::ack() {
|
||
IIC_SCL_0();
|
||
SDA_OUT();
|
||
IIC_SDA_0();
|
||
delay_us(2);
|
||
IIC_SCL_1();
|
||
delay_us(2);
|
||
IIC_SCL_0();
|
||
}
|
||
|
||
// No ACK response
|
||
void IIC::nAck() {
|
||
IIC_SCL_0();
|
||
SDA_OUT();
|
||
IIC_SDA_1();
|
||
delay_us(2);
|
||
IIC_SCL_1();
|
||
delay_us(2);
|
||
IIC_SCL_0();
|
||
}
|
||
|
||
// Send one IIC byte
|
||
// Return whether the slave responds
|
||
// 1 = there is a response
|
||
// 0 = no response
|
||
void IIC::send_byte(uint8_t txd) {
|
||
SDA_OUT();
|
||
IIC_SCL_0(); // Pull down the clock to start data transmission
|
||
LOOP_L_N(t, 8) {
|
||
// IIC_SDA = (txd & 0x80) >> 7;
|
||
if (txd & 0x80) IIC_SDA_1(); else IIC_SDA_0();
|
||
txd <<= 1;
|
||
delay_us(2); // All three delays are necessary for TEA5767
|
||
IIC_SCL_1();
|
||
delay_us(2);
|
||
IIC_SCL_0();
|
||
delay_us(2);
|
||
}
|
||
}
|
||
|
||
// Read 1 byte, when ack=1, send ACK, ack=0, send nACK
|
||
uint8_t IIC::read_byte(unsigned char ack_chr) {
|
||
unsigned char receive = 0;
|
||
SDA_IN(); // SDA is set as input
|
||
LOOP_L_N(i, 8) {
|
||
IIC_SCL_0();
|
||
delay_us(2);
|
||
IIC_SCL_1();
|
||
receive <<= 1;
|
||
if (READ_SDA()) receive++;
|
||
delay_us(1);
|
||
}
|
||
ack_chr ? ack() : nAck(); // Send ACK / send nACK
|
||
return receive;
|
||
}
|
||
|
||
/******************** EEPROM ********************/
|
||
|
||
// Initialize the IIC interface
|
||
void BL24CXX::init() { IIC::init(); }
|
||
|
||
// Read a byte at the specified address
|
||
// ReadAddr: the address to start reading
|
||
// Return: the byte read
|
||
uint8_t BL24CXX::readOneByte(uint16_t ReadAddr) {
|
||
uint8_t temp = 0;
|
||
IIC::start();
|
||
if (EE_TYPE > BL24C16) {
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS); // Send write command
|
||
IIC::wait_ack();
|
||
IIC::send_byte(ReadAddr >> 8); // Send high address
|
||
IIC::wait_ack();
|
||
}
|
||
else
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS + ((ReadAddr >> 8) << 1)); // Send device address 0xA0, write data
|
||
|
||
IIC::wait_ack();
|
||
IIC::send_byte(ReadAddr & 0xFF); // Send low address
|
||
IIC::wait_ack();
|
||
IIC::start();
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | 0x01); // Send byte
|
||
IIC::wait_ack();
|
||
temp = IIC::read_byte(0);
|
||
IIC::stop(); // Generate a stop condition
|
||
return temp;
|
||
}
|
||
|
||
// Write a data at the address specified by BL24CXX
|
||
// WriteAddr: The destination address for writing data
|
||
// DataToWrite: the data to be written
|
||
void BL24CXX::writeOneByte(uint16_t WriteAddr, uint8_t DataToWrite)
|
||
{
|
||
IIC::start();
|
||
if (EE_TYPE > BL24C16) {
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS); // Send write command
|
||
IIC::wait_ack();
|
||
IIC::send_byte(WriteAddr >> 8); // Send high address
|
||
}
|
||
else
|
||
{
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS + ((WriteAddr >> 8) << 1)); // Send device address 0xA0, write data
|
||
}
|
||
|
||
IIC::wait_ack();
|
||
IIC::send_byte(WriteAddr & 0xFF); // Send low address
|
||
IIC::wait_ack();
|
||
IIC::send_byte(DataToWrite); // Receiving mode
|
||
IIC::wait_ack();
|
||
IIC::stop(); // Generate a stop condition
|
||
delay(5);
|
||
}
|
||
|
||
// Start writing data of length Len at the specified address in BL24CXX
|
||
// This function is used to write 16bit or 32bit data.
|
||
// WriteAddr: the address to start writing
|
||
// DataToWrite: the first address of the data array
|
||
// Len: The length of the data to be written 2, 4
|
||
void BL24CXX::writeLenByte(uint16_t WriteAddr, uint32_t DataToWrite, uint8_t Len) {
|
||
LOOP_L_N(t, Len)
|
||
writeOneByte(WriteAddr + t, (DataToWrite >> (8 * t)) & 0xFF);
|
||
}
|
||
|
||
// Start reading data of length Len from the specified address in BL24CXX
|
||
// This function is used to read 16bit or 32bit data.
|
||
// ReadAddr: the address to start reading
|
||
// Return value: data
|
||
// Len: The length of the data to be read 2,4
|
||
uint32_t BL24CXX::readLenByte(uint16_t ReadAddr, uint8_t Len) {
|
||
uint32_t temp = 0;
|
||
LOOP_L_N(t, Len) {
|
||
temp <<= 8;
|
||
temp += readOneByte(ReadAddr + Len - t - 1);
|
||
}
|
||
return temp;
|
||
}
|
||
|
||
// Check if BL24CXX is normal
|
||
// Return 1: Detection failed
|
||
// return 0: detection is successful
|
||
#define BL24CXX_TEST_ADDRESS 0x00
|
||
#define BL24CXX_TEST_VALUE 0x55
|
||
|
||
bool BL24CXX::_check() {
|
||
return (readOneByte(BL24CXX_TEST_ADDRESS) != BL24CXX_TEST_VALUE); // false = success!
|
||
}
|
||
|
||
bool BL24CXX::check()
|
||
{
|
||
if (_check())
|
||
{
|
||
// Value was written? Good EEPROM!
|
||
writeOneByte(BL24CXX_TEST_ADDRESS, BL24CXX_TEST_VALUE); // Write now and check.
|
||
return _check();
|
||
}
|
||
return false; // success!
|
||
}
|
||
|
||
// Start reading the specified number of data at the specified address in BL24CXX
|
||
// ReadAddr: The address to start reading is 0~255 for 24c02
|
||
// pBuffer: the first address of the data array
|
||
// NumToRead: the number of data to be read
|
||
void BL24CXX::read(uint16_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead) {
|
||
for (; NumToRead; NumToRead--)
|
||
*pBuffer++ = readOneByte(ReadAddr++);
|
||
}
|
||
|
||
// Start writing the specified number of data at the specified address in BL24CXX
|
||
// WriteAddr: the address to start writing, 0~255 for 24c02
|
||
// pBuffer: the first address of the data array
|
||
// NumToWrite: the number of data to be written
|
||
void BL24CXX::write(uint16_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
|
||
{
|
||
for (; NumToWrite; NumToWrite--, WriteAddr++)
|
||
{
|
||
writeOneByte(WriteAddr, *pBuffer++);
|
||
}
|
||
}
|
||
|
||
void BL24CXX::EEPROM_Reset(uint16_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
|
||
{
|
||
write(WriteAddr, 0, NumToWrite);
|
||
delay(200);
|
||
}
|
||
|
||
//
|
||
// 参考安富莱的EEPROM驱动代码 - 该实现代码的好处是不需要通过延时去保证写时序,而是通过等待应答去保证写时序
|
||
//
|
||
#define I2C_WR 0 /* 写控制bit */
|
||
#define I2C_RD 1 /* 读控制bit */
|
||
// 页面大小(字节)
|
||
#define EE_PAGE_SIZE 16 // 为了保证兼容,对于页大小为32和64字节的也按16字节写
|
||
uint8_t BL24CXX::quickReadBytes(uint16_t Address, uint8_t *ReadBuf, uint16_t Size)
|
||
{
|
||
uint16_t i;
|
||
uint8_t addr_bytes = (EE_TYPE > BL24C16) ? 2 : 1;
|
||
/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
|
||
/* 第1步:发起I2C总线启动信号 */
|
||
IIC::start();
|
||
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
|
||
if (addr_bytes == 1){
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((Address >> 8) & 0x07) << 1)); /* 此处是写指令 */
|
||
}
|
||
else {
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR);
|
||
}
|
||
/* 第3步:发送ACK */
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
|
||
if (addr_bytes == 1){
|
||
IIC::send_byte((uint8_t)Address);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
}
|
||
else{
|
||
IIC::send_byte(Address >> 8);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
IIC::send_byte(Address);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
}
|
||
/* 第6步:重新启动I2C总线。下面开始读取数据 */
|
||
IIC::start();
|
||
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_RD); /* 此处是读指令 */
|
||
/* 第8步:发送ACK */
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
/* 第9步:循环读取数据 */
|
||
for (i = 0; i < Size; i++){
|
||
ReadBuf[i] = IIC::read_byte((i != Size - 1) ? 1 : 0); /* 读1个字节 */
|
||
// /* 每读完1个字节后,需要发送Ack, 最后一个字节不需要Ack,发Nack */
|
||
// if (i != Size - 1){
|
||
// IIC::ack(); /* 中间字节读完后,CPU产生ACK信号(驱动SDA = 0) */
|
||
// }
|
||
// else{
|
||
// IIC::nAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
|
||
// }
|
||
}
|
||
/* 发送I2C总线停止信号 */
|
||
IIC::stop();
|
||
return 1; /* 执行成功 */
|
||
|
||
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
|
||
/* 发送I2C总线停止信号 */
|
||
IIC::stop();
|
||
return 0;
|
||
}
|
||
|
||
uint8_t BL24CXX::quickWriteBytes(uint16_t Address, uint8_t *WriteBuf, uint16_t Size)
|
||
{
|
||
uint16_t i, m;
|
||
uint16_t usAddr;
|
||
uint8_t addr_bytes = (EE_TYPE > BL24C16) ? 2 : 1;
|
||
/*
|
||
写串行EEPROM不像读操作可以连续读取很多字节,每次写操作只能在同一个page。
|
||
对于24xx02,page size = 8
|
||
简单的处理方法为:按字节写操作模式,每写1个字节,都发送地址
|
||
为了提高连续写的效率: 本函数采用page wirte操作。
|
||
*/
|
||
usAddr = Address;
|
||
for (i = 0; i < Size; i++){
|
||
/* 当发送第1个字节或是页面首地址时,需要重新发起启动信号和地址 */
|
||
if ((i == 0) || (usAddr & (EE_PAGE_SIZE - 1)) == 0){
|
||
/* 发停止信号,启动内部写操作 */
|
||
IIC::stop();
|
||
/* 通过检查器件应答的方式,判断内部写操作是否完成, 一般小于 10ms
|
||
CLK频率为200KHz时,查询次数为30次左右
|
||
*/
|
||
for (m = 0; m < 1000; m++){
|
||
/* 第1步:发起I2C总线启动信号 */
|
||
IIC::start();
|
||
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
|
||
if(addr_bytes == 1){
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((usAddr >> 8) & 0x07) << 1)); /* 此处是写指令 */
|
||
}
|
||
else {
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR);
|
||
}
|
||
/* 第3步:发送一个时钟,判断器件是否正确应答 */
|
||
if (IIC::wait_ack() == 0){
|
||
break;
|
||
}
|
||
}
|
||
if (m == 1000){
|
||
goto cmd_fail; /* EEPROM器件写超时 */
|
||
}
|
||
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
|
||
if (addr_bytes == 1){
|
||
IIC::send_byte((uint8_t)usAddr);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
}
|
||
else{
|
||
IIC::send_byte(usAddr >> 8);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
IIC::send_byte(usAddr);
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
}
|
||
}
|
||
/* 第6步:开始写入数据 */
|
||
IIC::send_byte(WriteBuf[i]);
|
||
/* 第7步:发送ACK */
|
||
if (IIC::wait_ack() != 0){
|
||
goto cmd_fail; /* EEPROM器件无应答 */
|
||
}
|
||
usAddr++; /* 地址增1 */
|
||
}
|
||
/* 命令执行成功,发送I2C总线停止信号 */
|
||
IIC::stop();
|
||
/* 通过检查器件应答的方式,判断内部写操作是否完成, 一般小于 10ms
|
||
CLK频率为200KHz时,查询次数为30次左右
|
||
*/
|
||
for (m = 0; m < 1000; m++){
|
||
/* 第1步:发起I2C总线启动信号 */
|
||
IIC::start();
|
||
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
|
||
if(addr_bytes == 1) {
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR | (((Address >> 8) & 0x07) << 1)); /* 此处是写指令 */
|
||
}
|
||
else{
|
||
IIC::send_byte(EEPROM_DEVICE_ADDRESS | I2C_WR); /* 此处是写指令 */
|
||
}
|
||
/* 第3步:发送一个时钟,判断器件是否正确应答 */
|
||
if (IIC::wait_ack() == 0){
|
||
break;
|
||
}
|
||
}
|
||
if (m == 1000){
|
||
goto cmd_fail; /* EEPROM器件写超时 */
|
||
}
|
||
/* 命令执行成功,发送I2C总线停止信号 */
|
||
IIC::stop();
|
||
return 1;
|
||
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
|
||
/* 发送I2C总线停止信号 */
|
||
IIC::stop();
|
||
return 0;
|
||
}
|
||
|
||
#endif // IIC_BL24CXX_EEPROM
|